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Two players 

On the table, there are nine cards 
numbered from 1 to 9 

Players draw alternately 

The objective is to make a “book” – 
a set of three cards that adds to 15 

You can take more than three cards
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Two players alternate choosing 
groups of shapes 

The first player to get 3 groups that 
contain the same shape wins

Shapes
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DATE INSTRUCTOR11 JANUARY 2010 LORENZO SWANK

Tic Tac Toe isomorphs and their relation to user interface design 
introduced to me by Lorenzo Swank.  WarGames references added by me.

Original idea from Scott Klemmer (Stanford) and Susan Brennan (Stony Brook)
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Problem: 2 Objects Talking

Object 1 Object 2



Delegates
A delegate is an object that performs actions on the 
behalf of another object 

A common use is a data model object alerting a 
controller of changes to its data, which then tells view 
objects about the change  

Another use of them is a view object having a controller 
object interact with the program data model on its 
behalf when the user triggers events 

6 bits of code are required to properly set up both 
sides of a delegate connection between two objects



import UIKit 

@UIApplicationMain 
class AppDelegate: UIResponder, UIApplicationDelegate, KnobDelegate 
{ 
    var window: UIWindow? 

    func application(application: UIApplication,  
       didFinishLaunchingWithOptions l: [NSObject: AnyObject]?) -> Bool 
    { 
        window = UIWindow(frame: UIScreen.mainScreen().bounds) 
        window?.makeKeyAndVisible() 
         
        var knob: Knob = Knob(frame: window!.frame) 
        knob.backgroundColor = UIColor.darkGrayColor() 
        knob.delegate = self 
        window?.addSubview(knob) 
         
        return true 
    } 
     
    func knob(knob: Knob, rotatedToAngle angle: Float) 
    { 
        println("Knob rotated to angle: \(angle)") 
    } 
}

import UIKit 

protocol KnobDelegate: class 
{ 
    func knob(knob: Knob, rotatedToAngle angle: Float) 
} 

class Knob : UIView 
{ 
    private var _knobRect: CGRect = CGRectZero 
    private var _angle: Float = 3.0 * Float(M_PI) / 2.0 
     
    var angle: Float 
    { 
        get { return _angle } 
        set 
        { 
            _angle = newValue 
            setNeedsDisplay() 
        } 
    } 
     
    weak var delegate: KnobDelegate? = nil 

    override func touchesMoved(touches: NSSet, withEvent event: UIEvent) 
    { 
        let touch: UITouch = touches.anyObject() as UITouch 
        let touchPoint: CGPoint = touch.locationInView(self) 
        let touchAngle: Float = atan2f( 
            Float(touchPoint.y - _knobRect.midY), 
            Float(touchPoint.x - _knobRect.midX)) 
         
        angle = touchAngle 
        delegate?.knob(self, rotatedToAngle: angle) 
    } 

    override func drawRect(rect: CGRect) 
    { 
    } 
} 

1. Delegate Protocol
2. Delegate Property
3. Delegate Invocation

Delegator



import UIKit 

@UIApplicationMain 
class AppDelegate: UIResponder, UIApplicationDelegate, KnobDelegate 
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    var window: UIWindow? 

    func application(application: UIApplication,  
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        window = UIWindow(frame: UIScreen.mainScreen().bounds) 
        window?.makeKeyAndVisible() 
         
        var knob: Knob = Knob(frame: window!.frame) 
        knob.backgroundColor = UIColor.darkGrayColor() 
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        window?.addSubview(knob) 
         
        return true 
    } 
     
    func knob(knob: Knob, rotatedToAngle angle: Float) 
    { 
        println("Knob rotated to angle: \(angle)") 
    } 
}

import UIKit 

protocol KnobDelegate: class 
{ 
    func knob(knob: Knob, rotatedToAngle angle: Float) 
} 

class Knob : UIView 
{ 
    private var _knobRect: CGRect = CGRectZero 
    private var _angle: Float = 3.0 * Float(M_PI) / 2.0 
     
    var angle: Float 
    { 
        get { return _angle } 
        set 
        { 
            _angle = newValue 
            setNeedsDisplay() 
        } 
    } 
     
    weak var delegate: KnobDelegate? = nil 

    override func touchesMoved(touches: NSSet, withEvent event: UIEvent) 
    { 
        let touch: UITouch = touches.anyObject() as UITouch 
        let touchPoint: CGPoint = touch.locationInView(self) 
        let touchAngle: Float = atan2f( 
            Float(touchPoint.y - _knobRect.midY), 
            Float(touchPoint.x - _knobRect.midX)) 
         
        angle = touchAngle 
        delegate?.knob(self, rotatedToAngle: angle) 
    } 

    override func drawRect(rect: CGRect) 
    { 
    } 
} 

1. Delegate Protocol
2. Delegate Property
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5. Delegate Assignment
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1. Delegate Protocol
2. Delegate Property
3. Delegate Invocation

4. Delegate Protocol Conformity
5. Delegate Assignment
6. Delegate Protocol Method(s)

The method invocation here…

executes here.
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Example: Paintings
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