
Mobile Application
Programming
Data Models

Two players

On the table, there are nine cards
numbered from 1 to 9

Players draw alternately

The objective is to make a “book” –
a set of three cards that adds to 15

You can take more than three cards

Numbers

7

3

4

8

1

2

6

9

5

Player 1 Player 2

73

4

8

1

2

6

9

5

Two players alternate choosing
groups of shapes

The first player to get 3 groups that
contain the same shape wins

Shapes

Player 1 Player 2

73

4

8 1

2

6

9

5

X
O

O
X

O

X

X

73

4

8 1

2

6

9

5

X
O

O
X

O

X

X
Representation Matters

DATE INSTRUCTOR11 JANUARY 2010 LORENZO SWANK

Tic Tac Toe isomorphs and their relation to user interface design
introduced to me by Lorenzo Swank. WarGames references added by me.

Original idea from Scott Klemmer (Stanford) and Susan Brennan (Stony Brook)

Containers & Content Container View

Content View

Legend

View Property

Reference
Delegate

View Controller

Window

Root View

Collection ViewHeader View Footer View

TitleAdd Button TitleItemItem Item Refresh

Content Label Detail LabelIcon

TextImage Text

View Controller

Window

Root View

Collection ViewHeader View Footer View

TitleAdd Button TitleItemItem Item Refresh

Content Label Detail LabelIcon

TextImage Text

View Controller

How Does This Fit With MVC?

Controller

View Model

User Action Notify

Update Update

Problem: 2 Objects Talking

Object 1 Object 2

Delegates
A delegate is an object that performs actions on the
behalf of another object

A common use is a data model object alerting a
controller of changes to its data, which then tells view
objects about the change

Another use of them is a view object having a controller
object interact with the program data model on its
behalf when the user triggers events

6 bits of code are required to properly set up both
sides of a delegate connection between two objects

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, KnobDelegate
{
 var window: UIWindow?

 func application(application: UIApplication,
 didFinishLaunchingWithOptions l: [NSObject: AnyObject]?) -> Bool
 {
 window = UIWindow(frame: UIScreen.mainScreen().bounds)
 window?.makeKeyAndVisible()

 var knob: Knob = Knob(frame: window!.frame)
 knob.backgroundColor = UIColor.darkGrayColor()
 knob.delegate = self
 window?.addSubview(knob)

 return true
 }

 func knob(knob: Knob, rotatedToAngle angle: Float)
 {
 println("Knob rotated to angle: \(angle)")
 }
}

import UIKit

protocol KnobDelegate: class
{
 func knob(knob: Knob, rotatedToAngle angle: Float)
}

class Knob : UIView
{
 private var _knobRect: CGRect = CGRectZero
 private var _angle: Float = 3.0 * Float(M_PI) / 2.0

 var angle: Float
 {
 get { return _angle }
 set
 {
 _angle = newValue
 setNeedsDisplay()
 }
 }

 weak var delegate: KnobDelegate? = nil

 override func touchesMoved(touches: NSSet, withEvent event: UIEvent)
 {
 let touch: UITouch = touches.anyObject() as UITouch
 let touchPoint: CGPoint = touch.locationInView(self)
 let touchAngle: Float = atan2f(
 Float(touchPoint.y - _knobRect.midY),
 Float(touchPoint.x - _knobRect.midX))

 angle = touchAngle
 delegate?.knob(self, rotatedToAngle: angle)
 }

 override func drawRect(rect: CGRect)
 {
 }
}

1. Delegate Protocol
2. Delegate Property
3. Delegate Invocation

Delegator

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, KnobDelegate
{
 var window: UIWindow?

 func application(application: UIApplication,
 didFinishLaunchingWithOptions l: [NSObject: AnyObject]?) -> Bool
 {
 window = UIWindow(frame: UIScreen.mainScreen().bounds)
 window?.makeKeyAndVisible()

 var knob: Knob = Knob(frame: window!.frame)
 knob.backgroundColor = UIColor.darkGrayColor()
 knob.delegate = self
 window?.addSubview(knob)

 return true
 }

 func knob(knob: Knob, rotatedToAngle angle: Float)
 {
 println("Knob rotated to angle: \(angle)")
 }
}

import UIKit

protocol KnobDelegate: class
{
 func knob(knob: Knob, rotatedToAngle angle: Float)
}

class Knob : UIView
{
 private var _knobRect: CGRect = CGRectZero
 private var _angle: Float = 3.0 * Float(M_PI) / 2.0

 var angle: Float
 {
 get { return _angle }
 set
 {
 _angle = newValue
 setNeedsDisplay()
 }
 }

 weak var delegate: KnobDelegate? = nil

 override func touchesMoved(touches: NSSet, withEvent event: UIEvent)
 {
 let touch: UITouch = touches.anyObject() as UITouch
 let touchPoint: CGPoint = touch.locationInView(self)
 let touchAngle: Float = atan2f(
 Float(touchPoint.y - _knobRect.midY),
 Float(touchPoint.x - _knobRect.midX))

 angle = touchAngle
 delegate?.knob(self, rotatedToAngle: angle)
 }

 override func drawRect(rect: CGRect)
 {
 }
}

1. Delegate Protocol
2. Delegate Property
3. Delegate Invocation

4. Delegate Protocol Conformity
5. Delegate Assignment
6. Delegate Protocol Method(s)

Delegator

Delegate

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, KnobDelegate
{
 var window: UIWindow?

 func application(application: UIApplication,
 didFinishLaunchingWithOptions l: [NSObject: AnyObject]?) -> Bool
 {
 window = UIWindow(frame: UIScreen.mainScreen().bounds)
 window?.makeKeyAndVisible()

 var knob: Knob = Knob(frame: window!.frame)
 knob.backgroundColor = UIColor.darkGrayColor()
 knob.delegate = self
 window?.addSubview(knob)

 return true
 }

 func knob(knob: Knob, rotatedToAngle angle: Float)
 {
 println("Knob rotated to angle: \(angle)")
 }
}

import UIKit

protocol KnobDelegate: class
{
 func knob(knob: Knob, rotatedToAngle angle: Float)
}

class Knob : UIView
{
 private var _knobRect: CGRect = CGRectZero
 private var _angle: Float = 3.0 * Float(M_PI) / 2.0

 var angle: Float
 {
 get { return _angle }
 set
 {
 _angle = newValue
 setNeedsDisplay()
 }
 }

 weak var delegate: KnobDelegate? = nil

 override func touchesMoved(touches: NSSet, withEvent event: UIEvent)
 {
 let touch: UITouch = touches.anyObject() as UITouch
 let touchPoint: CGPoint = touch.locationInView(self)
 let touchAngle: Float = atan2f(
 Float(touchPoint.y - _knobRect.midY),
 Float(touchPoint.x - _knobRect.midX))

 angle = touchAngle
 delegate?.knob(self, rotatedToAngle: angle)
 }

 override func drawRect(rect: CGRect)
 {
 }
}

1. Delegate Protocol
2. Delegate Property
3. Delegate Invocation

4. Delegate Protocol Conformity
5. Delegate Assignment
6. Delegate Protocol Method(s)

The method invocation here…

executes here.

Delegator

Delegate

Application

Controller

View Model

User Action Notify

Update Update

Model View Controller (MVC)Application

Controller

View Model

User Action Notify

Update Update

Notification

How do these happen?

Controller

View Model

User Action Notify

Update Update

Notification

How do these happen? Delegation

Example: Paintings

Example: Paintings

Painting List
View Controller’s View

Painting
View Controller’s View

Main Controller
App Delegate

having a Split View Controller
attached to a window

Painting List View
Controller

Painting View
Controller

UICollectionView PaintingViewPainting
Collection

View

Has
Weak Reference

Delegate

Controller

Model

Main Controller
App Delegate

having a Split View Controller
attached to a window

Painting List View
Controller

Painting View
Controller

UICollectionView PaintingViewPainting
Collection

View

Has
Weak Reference

Delegate

Controller

Model

User adds a stroke by
dragging their finger

then lifting it

Main Controller
App Delegate

having a Split View Controller
attached to a window

Painting List View
Controller

Painting View
Controller

UICollectionView PaintingViewPainting
Collection

View

Has
Weak Reference

Delegate

Controller

Model

PaintingView notifies
delegate of addition

Main Controller
App Delegate

having a Split View Controller
attached to a window

Painting List View
Controller

Painting View
Controller

UICollectionView PaintingViewPainting
Collection

View

Has
Weak Reference

Delegate

Controller

Model

Painting View Controller
requests addition of the
stroke to the painting in
the Painting Collection

Main Controller
App Delegate

having a Split View Controller
attached to a window

Painting List View
Controller

Painting View
Controller

UICollectionView PaintingViewPainting
Collection

View

Has
Weak Reference

Delegate

Controller

Model

The Painting Collection
alerts its delegate of the

change to its data

Main Controller
App Delegate

having a Split View Controller
attached to a window

Painting List View
Controller

Painting View
Controller

UICollectionView PaintingViewPainting
Collection

View

Has
Weak Reference

Delegate

Controller

Model

The Main Controller tells all
view controllers that they
should update their views

Main Controller
App Delegate

having a Split View Controller
attached to a window

Painting List View
Controller

Painting View
Controller

UICollectionView PaintingViewPainting
Collection

View

Has
Weak Reference

Delegate

Controller

Model

The view controllers update
their views by asking the

Painting Collection for the
latest data

Data Conversion

PaintingViewPainting
Collection

Controller

Data Conversion

PaintingViewPainting
Collection

Controller

PaintingPaintingPainting

StrokeStrokeStroke Aspect

Data Conversion

PaintingViewPainting
Collection

Controller

PaintingPaintingPainting

StrokeStrokeStroke Aspect

Painting

StrokeStrokeStroke Aspect

Data Conversion

PaintingViewPainting
Collection

Controller

PaintingPaintingPainting

StrokeStrokeStroke Aspect

Painting

StrokeStrokeStroke Aspect
Shared Model Objects ???Shared Model Objects ???

Data Conversion

PaintingViewPainting
Collection

Controller

PaintingPaintingPainting

StrokeStrokeStroke Aspect

Painting

StrokeStrokeStroke Aspect
Shared Model Objects ???Shared Model Objects ???

Strange Data?

Data Conversion

PaintingViewPainting
Collection

Controller

PaintingPaintingPainting

StrokeStrokeStroke Aspect

Painting

StrokeStrokeStroke Aspect
Shared Model Objects ???

Persistence?

Strange Data?

Data Conversion

PaintingViewPainting
Collection

Controller

PaintingPaintingPainting

StrokeStrokeStroke Aspect

Painting

StrokeStrokeStroke Aspect
Shared Model Objects ???

Persistence?

Server Updates?

Strange Data?

Data Conversion

PaintingViewPainting
Collection

Controller

PaintingPaintingPainting

StrokeStrokeStroke Aspect

Painting

StrokeStrokeStroke Aspect
Shared Model Objects ???

Mutability?

Persistence?

Server Updates?

Strange Data?

Data Conversion

PaintingViewPainting
Collection

Controller

PaintingPaintingPainting

StrokeStrokeStroke Aspect

Painting

StrokeStrokeStroke Aspect
Shared Model Objects ???

Persistence?

Concurrently Changing Data?

Server Updates?

Strange Data?
Mutability?

Data Conversion

PaintingViewPainting
Collection

Controller

PaintingPaintingPainting

StrokeStrokeStroke Aspect

StrokeStrokePolyline

Brush

Current
Polyline

Brush

Data Conversion

PaintingViewPainting
Collection

Controller

PaintingPaintingPainting

StrokeStrokeStroke Aspect

StrokeStrokePolyline

Brush

Current
Polyline

Brushx:0->1, y:0->1 x:0->width, y:0->height16/9

Data Conversion

PaintingViewPainting
Collection

Controller

PaintingPaintingPainting

StrokeStrokeStroke Aspect

StrokeStrokePolyline

Brush

Current
Polyline

Brushx:0->1, y:0->1

x:0->width, y:0->height

16/9

Data Conversion

PaintingViewPainting
Collection

Controller

PaintingPaintingPainting

StrokeStrokeStroke Aspect

StrokeStrokePolyline

Brush

Current
Polyline

Brushx:0->1, y:0->1

x:0->width, y:0->height

16/9

model view
model view

